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LETTER TO THE EDITOR 

Inverse branching rules 

C J Cummins 
Department of Mathematics, Concordia University, Sir George Williams Campus, 1455 
De Maisonneuve Blvd West, Montreal, Quebec, Canada? 

Received 14 August 1989 

Abstract. A method is given for ‘inverting’ branching rules which is based on a technique 
for computing Kronecker products due to King. This approach simplifies the calculation 
of plethysms and branching rules of representations of exceptional groups. It may also 
be applied to basic spin piethysms. 

It is well known that the Kronecker product of two irreducible representations of a 
compact, simple Lie group G with highest-weight labels AG and pG may be computed 
using the Racah-Speiser (1964) formula. The only information required is the weight- 
space decomposition of one of the representations, pG say, and the twisted Weyl group 
action, hG + W (  hG + 8,) - S G ,  on weight-space. This formula may be stated in the form 
of an algorithm: 

Algorithm 1 (Racah 1964, Speiser 1964) 

Input: 

G ,  hG 9 I*G 

8, MZUT 

simple Lie group G: two irreducible representations 

weight-space decomposition of the representation pG 

output:  

K Qc; k W C ;  

Method: 
1.1. Add the highest-weight label of the representation hG to each of the weight labels 
in X,,, MZ;uH.  
1.2. Apply the G weight-space modification rules (i.e. apply the Weyl group with 
twisted action) to make dominant the resulting labels. This produces a sum of rep- 
resentations of G which is the required decomposition of the Kronecker product. 

multiplicity of the representation pG in the Kronecker product 
of the representations hG and pG 

Note that the weight-space modifications may result in representations with negative 
or zero multiplicities. The latter may be discarded, while the former ‘cancel’ terms 
with positive multiplicities to yield, eventually, non-negative multiplicities for all 
representations; this process is best understood in terms of manipulations of the 
corresponding characters. 
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King (1981) observed that the weight-space decomposition of pG may be considered 
to be a branching of this representation to a maximal, toroidal subgroup T of G, and  
that the combination of weight labels in step 1.1 is simply the Kronecker product of 
representations of T-the weight labels being labels of one-dimensional, irreducible 
representations of T. This suggests the following generalisation of the Racah-Speiser 
formula based on the branching of p(; to an  equal-rank, regular, reductive subgroup 
H of G: 

Algorithm 2 (King 1981; see also Black et a1 1983) 

Input: 

G ,  H 

A G ,  pCi 

Z,,, M;;,aH 

simple Lie group G: equal-rank, regular, reductive subgroup H 

two irreducible representations of G 

branching of the representation pLc, to H 

output :  

KI(L O P < ,  

Method: 
2.1. Add 8, - SH to the highest-weight label of h o ,  where SG is half the sum of the 
positive roots of G and SH is half the sum of the positive roots of H. 
2.2. Take the Kronecker product of the corresponding representation ( A G  + SC, - SH)H 

of H with C,,,, M(I:',gH in H and  express the result as a sum of irreducible representations 
of H. 
2.3. Subtract SG - SH from each of the highest-weight labels in this sum and apply the 
G weight-space modification rules as in step 1.2 above (see Black et a1 1983, table 4) 
to produce a sum of representations of G which is the required decomposition of the 
Kronecker product. 

multiplicity of the representation pG in the Kronecker product of 
the representations A < ,  and pUc 

When using this algorithm it is convenient to label the representations of G in a scheme 
adapted to the subgroup H: see King and  AI-Qubanchi (1981), where weight-space 
modification rules are also given for many exceptional-group subgroup pairs. If H is 
chosen to be a unitary group then there exists an  extremely efficient algorithm-the 
Littlewood-Richardson rule-for computing the required Kronecker products. In 
addition the number of modifications necessary is typically much smaller than the 
number required for the Racah-Speiser formula. Consequently the algorithm is very 
quick once the initial branching is known. See section 8 of Black et a1 (1983) for some 
examples. 

The aim of this letter is to point out that if we specialise to the case where the 
representation hc is the identity representation of G, then this algorithm may be used 
to 'invert' branchings from G to H in a very efficient manner. To be precise we have 
the following algorithm. 

Algorithm 3 
Input: 
G, H 
XmHM"~uH 

simple Lie group G: equal-rank, regular, reductive subgroup H 

a sum of irreducible representations, which is known to be the 
restriction to H of some representation of G 
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output :  
C,,;K p ( 8 P G  

Method: 
3.1. Take the Kronecker product of the representation (8 ,  - SH)H of H with X , , H M ” H ~ H  
in H and  express the result as a sum of irreducible representations of H. 
3.2. Apply step 2.3 of the previous algorithm. The result is Z,c,K”opc. 

This algorithm is simply algorithm 2 applied to the Kronecker product of the identity 
representation of G and X l p ( , K ” ( ~ p G .  Since algorithm 2 does not actually require this 
representation as input, but rather its branching to H, M”HuH, we may apply it to 
calculate the product. On the other hand we know that the result must be X . , c , K ” c , p G ,  
which is the representation of G we wish to calculate. Hopefully the following three 
examples will convince the reader that this algorithm is useful. 

Example 1. Plethysms in E,. To find ( l’)E’2‘, the symmetric square of the 56-dimensional 
representation of E,, which is labelled ( 1 2 )  in an  SU, basis (cf section 13 of Wybourne 
and  Bowick (1977) where a slightly different labelling scheme is used). 
( 1 )  Under the restriction E7JSU,  we have the branching (l’)J{i?)+{l’}.  
(2) Using standard techniques (see for example appendix 1 of Cummins and King 
(1986) and  its references) in SU,: 

decomposition into irreducibles of the (unique) representation 
of G which branches to ~ , , t l M ” ~ a H  

((7’) + { 1 { 1’)  = {2-}+{ i4}+ -7  { i?;  i ’ }+{ i ;  1} + {o}+ 1 2 ~ } + {  1‘). 

In  terms of covariant representation labels this is 

{26}+{22}+2{14}+{2214}+{216}+{o}. 

(3)  This last sum is the restriction to SU, of the required E7 representation, so algorithm 
3 is applicable. In  this case ( 8 G - 8 H ) H  is the representation {lo} of SU,, but as 
explained in section 8 of Black et a1 (1983) i t  is sufficient in this case to use the 
representation (2). 
(4) Using the Littlewood-Richardson rule: 

{2‘} 9 {2} = {42’}+{32‘1}+{2’} 

{ 2’) * (2) = {42} + (32 I} + { 2’) 

2{ 14} . { 2) = 2{ 3 1 ’} + 2{ 2 1 ‘} 

{2’14} . (2) = {4214} + { 32’13} + (32 1 ’} + {2’14} 

{ 2 1 ‘} . { 2) = (41 ‘} + (32 1 ’} + { 3 1 ’} + { 2’ 1‘) 

(01 . (21 = (2). 
(5) Subtracting 2 from each first representation label we obtain the non-standard E, 
representation labels: 

( 2 7  + (12’1) + (027  

(2’)+(121)+(02’) 

2 ( i4 )+2(o i4 )  

(2?i4)+  (12*i3)+  (1217+  (02’1~) 

(21h)+(1215)+(lX)+(021’).  
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Of these representations (2*), (21,) and (0) are standard in E,, while (1’) modifies to 
(0) and 2(014) modifies to -2(0), which cancels the other two copies of the identity 
representation. All the other representations modify to zero and thus (cf equation (56 )  
of Wybourne and Bowick (1977)) 

(1’””1=(2’)+(216). 

This technique should considerably increase the range of exceptional group plethysms 
that can be calculated, since previous calculations have required tabulations of branch- 
ing rules for the final ‘inversion’, or have used weight-space methods. 

Example 2. Basic spin plethysms. We may calculate basic spin plethysms in a similar 
manner. Consider, for example, A?‘”, the symmetric square of one of the four- 
dimensional spin representations of SO,: 
( 1 )  Under the restriction SO,& U3, 

A- J E - ” ’( { 1 ’} + { 0)). 

Here E is the determinantal representation of U,. 
(2)  Again using standard techniques we find in U3: 

1’) + { o } ) ) @ { ~ ~  = {i; 1’) +{i}+ {i3} 
= { l ,  1 ,  -l}+{O,O, -l}+{-1,  - 1 ,  -1} .  

(3) Now apply algorithm 3; in this case (&- 8H)H is {0}, so addition and subtraction 
of the corresponding highest-weight label are null operations. Hence we obtain the 
non-standard SO, representations: 

[ l ,  1 ,  -1]+[0,0, - 1 ] + [ - 1 ,  - 1 ,  - 1 1 .  

Of these the first, [l’ l- ,  is standard, while the second two modify to zero. So the 
required plethysm is: 

A? ( 2 1  = [ i3] - .  

King et a1 (1981) have given explicit formulae for basic spin plethysms up to the third 
degree and a prescription for the calculation of fourth-degree plethysms. In addition 
all cases up to SO, can be analysed by well-known automorphisms and isomorphisms. 
The method just outlined would be of use for computing plethysms of higher degree 
and for higher-rank groups in a uniform manner suitable for computer implementation. 

Example 3. Branchings in E x .  In Wybourne (1984) branching rules for E,JSO,, are 
computed using the subgroup chains, E,& SU, x E,& U ,  x SUS and SO,,& U, x SU,?. 
Using algorithm 3 we may simplify the last step of this procedure. For example to 
calculate the branching of the 248-dimensional representation of Ex,  labelled by (1’)  
in a SO,, basis: 
( 1 )  Under the restriction E,& SU, x E7 

(1”&{2)x(0)+{1}x(1’)+(0}x(21~) 

( 2 + 0 + 2 )  x {o}+( i  + i )  x{i’+ i 2 }+(o )  x { i ;  1 + 14}. 

and under the further restriction, SU2 x E7& U, x SUS,  this branches to 

t Actually a litte more care is required here. The centres of SU2 and E, should be identified, so S U z  x E, 
isa central product. This means that U ,  x SUB is a covering group of U, which is evident, since multiple-valued 
representations of U, arise. Similarly the ‘SO,’ and ‘U3’ of example 2 are covering groups. 
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(2) This last sum of representations is the branching of the required representation of 
SO,, under the restriction SO,,JU, x SU,.  Before applying algorithm 3 it is necessary 
first to convert the U ,  x SUS labels to Ux labels. To do this we calculate e = ( a  - b ) / 8  
where a is twice the U ,  label and b the weight of the SU, label. This number is then 
added to each part of the SUS label: 

I l l 1 1 1 L 1  
( 2 )  x IO} + ( ? , ? , I .  I ,  2 ,  ? r  2 , 2 )  

(0) x IO) += (O,O,  o,o, o,o, 090) 
I T r 7 y I y y  

( 2 ) X { 0 } - , ( S l I , I , I , 2 , 2 , 2 , 2 )  

( l ) x { i z > + ( i  1 L I L I T T 
9 2 , 2 9 2 3 2 ,  ? ?  2 7  I )  

(i) x {i2} + (0, 0, 0, 0, o,o,  i, i) 
(1)x{12>+(1,  1 ,0 ,0 ,0 ,0,0,0)  

I I T I y y - -  (1) x {17+  ( 5 , 2 9 2 ,  I ,  2 , 2  7 ;, t )  
( o ) ~ { i ; i } - , ( i , o , o , o , o , o , o , i )  
( o ) x { ~ ~ } + = ( I ,  2 ,  ?, 2 ,  2 r  2 ,  2 ,  d. 

_ - - -  
1 1 1 1 1 1 1  I 

(3) We now continue as in example 2 ;  only modifications in SO,,  are necessary. The 
first, second and sixth terms are standard, while the fifth modifies to 
- (O,  0, O,O, 0, 0, 0,O) and so cancels the second. The rest modify to zero. The final 
answer is thus: 

I I I I I I I I 
( 3 , 2 9 2  7 z,3, z, I ,  i) + (1 ,1,0,0,0,0,0,0)  

which, in more usual notation, is 

A +  + [ 1’1. 

In  this example we could have reversed the procedure to deduce the SU, x E, content 
of (12) given its branching to SO,, ,  since no E, products are required. This technique 
would in general allow one to calculate branchings to equal-rank, regular subgroups 
once the branching to one such subgroup is known and provided a suitable common 
subgroup could be found. 

Remarks 
(1) Although algorithm 3 allows us to ‘invert’ branchings from G to H it does not 
seem possible, in general, to deduce from this a way of computing the branchings 
from G to H. 
(2)  I t  would be interesting to see if similar techniques could be applied to Kac-Moody 
algebras. Many of the details in this case, however, have yet to be worked out. 
(3)  As the examples show, it is not unusual for a large number of representations of 
H to be produced that do not contribute to the final answer. An advantage of algorithm 
3 is that these representations may be modified, and if necessary discarded, as produced. 

I would like to thank Professors R C King and B G Wybourne for encouragement 
and useful conversations. Thanks are also due to Professors D J Rowe and B Castel 
who organised the CAP-NSERC 1989 Summer Institute in Theoretical Physics at 
Kingston, Ontario, where some of this work was done. This work was partially 
supported by the Natural Sciences and Engineering Council of Canada. 
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